A spherical ball contracts in volume by 0.01% when subjected to a normal uniform pressure of 100 atm . the bulk modulus of its material is

Solution

Bulk modulus of the material of the body is

$$
B=\frac{P}{v / V}
$$

where P - a pressure is applied to spherical ball, $\frac{v}{V}$ - volume strain of spherical ball.
The bulk modulus of its material is

$$
B=\frac{100 \mathrm{~atm}}{0.0001}=\frac{100 \mathrm{~atm}}{0.0001}=1 * 10^{6} \mathrm{~atm}=10^{6} * 1.0 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=10 * 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

Answer: $10 * 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.

