Answer on question 36946 - Math - Algebra

Gravity on the moon is about one- sixth of gravity on Earth. An astronaut standing on a tower 20 feet above the moon's surface throws a ball upward with a velocity of 30 feet per second. The height of the all at any time t (in seconds) is $h(t)=-2.67 t^{\wedge} 2+30 t+20$. To the nearest tenth of a second, how long will it take for the ball to hit the ground?

Solution

In another word we should find the time when $\mathrm{h}(\mathrm{t})$ equals 0 . Therefore we get equation

$$
\begin{gathered}
-2.67 t^{2}+30 t+20=0 \\
D=900+4 * 20 * 2.67=1113.6 \\
t_{1}=\frac{-30-\sqrt{1113.6}}{-2 * 2.67} \approx 11.9 \mathrm{sec} . \\
t_{2}=\frac{-30+\sqrt{1113.6}}{-2 * 2.67}<0 .
\end{gathered}
$$

Answer: 11.9 sec .

