Steel wire of length 2.5 m and area of cross-section $2.5 * 10^{-6} \mathrm{~m}^{2}$ is suspended from a torsion head. A 5 kg weight is suspended at its free-end. Calculate the work done on the wire.
Take $=2 * 10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.

## Solution

Work done in the wire of length $l$ to a length $l+\Delta l$ by force $F$ is

$$
W=\frac{1}{2} \sigma \varepsilon V
$$

where $\sigma=\frac{F}{A}-$ stress, $A-$ area, $\varepsilon=\frac{\Delta l}{l}-$ strain, $V-$ volume.

$$
Y=\frac{\sigma}{\varepsilon} \rightarrow \varepsilon=\frac{\sigma}{Y}
$$

where $Y$ - Young's modulus.
So

$$
W=\frac{1}{2} \sigma * \frac{\sigma}{Y} * V=\frac{\sigma^{2} V}{2 Y}
$$

A force $F$ in that case is weight of 5 kg :

$$
F=m g
$$

where $g$ acceleration due to the gravity.
Now we have

$$
\begin{gathered}
W=\frac{\left(\frac{m g}{A}\right)^{2} A * l}{2 Y}=\frac{m^{2} * g^{2} * l}{2 * A * Y} . \\
W=\frac{5^{2} \mathrm{~kg}^{2} * 9.8^{2}\left(\frac{\mathrm{~N}}{\mathrm{~kg}}\right)^{2} * 2.5 \mathrm{~m}}{2 * 2.5 * 10^{-6} \mathrm{~m}^{2} * 2 * 10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}}=6 * 10^{-3} \mathrm{~J} .
\end{gathered}
$$

Answer: $6 * 10^{-3} \mathrm{~J}$.

