Two moles of a perfect gas occupy a volume 5 of 0.065 m 3 and exert a pressure of $3.0 \times 105 \mathrm{~N}$ $\mathrm{m}-2$. It is compressed isobarically to 0.050 m 3 . Determine the work done by the gas and the fall in its temperature. Take R=8.3 JK $-\mathrm{I} \mathrm{mol}-1$.

Solution

The work done by the gas that isobarically compressed:

$$
W=P \Delta V=P\left(V_{2}-V_{1}\right)
$$

where P - pressure, V_{1} - initial volume of a perfect gas, V_{2} - final volume of a perfect gas.
So

$$
W=3.0 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(0.050 \mathrm{~m}^{3}-0.065 \mathrm{~m}^{3}\right)=-4.5 * 10^{3} \mathrm{~J} .
$$

A sign "-" means that the work done on the gas.
Let's write state equation of perfect gas for initial and final states:

$$
P V_{1}=v R T_{1} \text { and } P V_{2}=v R T_{2}
$$

The fall in the temperature of perfect gas:

$$
T_{1}-T_{2}=\frac{P V_{1}-P V_{2}}{v R}=\frac{3.0 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(0.065 \mathrm{~m}^{3}-0.050 \mathrm{~m}^{3}\right)}{2 \mathrm{~mol} * 8.3 \frac{\mathrm{~J}}{\mathrm{~K} * \mathrm{~mol}}}=271 \mathrm{~K} .
$$

Answer: -4. 5 * $\mathbf{1 0}^{\mathbf{3}} \mathrm{J} ; 271 \mathrm{~K}$.

