A gas is suddenly compressed to 10 times 3 its original pressure. Calculate the rise in temperature of the gas if its initial temperature is $27^{\circ} \mathrm{C}(\gamma=1.5)$.

## Solution

Sudden compression means there is hardly any time for heat exchange to occur with the environment which indicates that the process is adiabatic for which $\left(P * V^{\gamma}\right)$ is constant and $\gamma$ is adiabatic index.

Also, for an ideal gas,

$$
P V=v R T \rightarrow V=\frac{v R T}{P}
$$

where $P$ - pressure, $V$ - volume, $T$ - temperature, $R$ - the gas constant, $v$ - amount of substance.
The initial value of $\left(P * V^{\gamma}\right)$ is equal to its final value:

$$
P_{1} * V_{1}^{\gamma}=P_{2} * V_{2}^{\gamma}
$$

Then

$$
P_{1} *\left(\frac{\nu R T_{1}}{P_{1}}\right) \gamma=P_{2} *\left(\frac{\nu R T_{2}}{P_{2}}\right)^{\gamma} \rightarrow\left(\frac{T_{2}}{T_{1}}\right)^{\gamma}=\left(\frac{P_{2}}{P_{1}}\right)^{\gamma-1} .
$$

So

$$
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}
$$

The rise in temperature of the gas

$$
\begin{gathered}
\Delta T=T_{2}-T_{1}=T_{1} *\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}-T_{1}=T_{1}\left(\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right) \\
\Delta T=(27+273) K *\left(\left(10^{3}\right)^{\frac{1.5-1}{1.5}}-1\right)=300 K *\left(\left(10^{3}\right)^{\frac{1}{3}}-1\right)=300 K *(10-1)=2700 K
\end{gathered}
$$

Answer: 2700K.

