The Task:

An elevator accelerates upward at $3 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ for a brief time. A 500 N woman standing on bathroom scales notices the reading is not what she expected. What do the scales read?

Solution:

The gravitational acceleration of the Earth $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ acts on a woman when she is on the ground, and it gives her a weight $P_{0}=500 \mathrm{~N}$. So we can find a mass m of the woman:

$$
m=\frac{P_{0}}{g}=\frac{500 \mathrm{~N}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=51 \mathrm{~kg}
$$

When a woman is standing on the elevator, it gives her to the acceleration of gravity additional acceleration $a=3 \mathrm{~m} / \mathrm{s}^{2}$, and thus her weight increases:

$$
P=m(g+a)=51 \cdot(9.8+3)=653 N
$$

The Answer: $\mathrm{P}=653 \mathrm{~N}$

