A steel wire of 1 m long and 1 mm square in area of cross section. If it takes 200 N to stretch the wire by 1 mm how much force will be required to stretch the wire of same area and same material and having length of 10 m to 1002 cm ?

Hooke's law:

$$
F=k \Delta l
$$

where $k=\frac{E S}{l}$ - a constant factor characteristic of the spring, E-modulus of elasticity of steel, S - cross section, I - length.

In first case:

$$
F_{1}=\frac{E S}{l_{1}} \Delta l_{1}
$$

Similarly, for second:

$$
F_{2}=\frac{E S}{l_{2}} \Delta l_{2}
$$

Therefore:

$$
\begin{gathered}
\frac{F_{2}}{F_{1}}=\frac{\Delta l_{2}}{l_{2}} \frac{l_{1}}{\Delta l_{1}} \\
F_{2}=\frac{\Delta l_{2}}{l_{2}} \frac{l_{1}}{\Delta l_{1}} F_{1}=\frac{1002 \mathrm{~cm}-10 \mathrm{~m}}{10 \mathrm{~m}} *\left(\frac{1 \mathrm{~m}}{1 \mathrm{~mm}}\right) 200 \mathrm{~N}=\frac{0.02 \mathrm{~m}}{10 \mathrm{~m}} * \frac{1 \mathrm{~m}}{0.001 \mathrm{~m}} * 200 \mathrm{~N}=400 \mathrm{~N}
\end{gathered}
$$

Answer: 400 N

