Solution

If heat of combustion of waste is like to wood $\lambda=21.7 \mathrm{MJ} / \mathrm{kg}$ we have the energy which produced of burning of $\mathrm{m}=230$ million tones with 20% efficient, is
$Q=0.2 \cdot 21.7 \mathrm{MJ} / \mathrm{kg} \cdot 2.3 \cdot 10^{11} \mathrm{~kg}=9.98 \cdot 10^{17} \mathrm{~J}=2.77 \cdot 10^{11} \mathrm{~kW} \cdot \mathrm{~h}$
a) From hence, it is near $\mathbf{Q} / E=\mathbf{0 . 0 7 3}$ of total electric energy which produced in USA ($\mathbf{E}=\mathbf{3}$.8trillion $k W h)$.
b) It is 8766 hours in year. From hence we get power $W=\frac{2.77 \cdot 10^{11} \mathrm{~kW} \cdot \mathrm{~h}}{8766 \mathrm{~h}}=3.15 \cdot 10^{10} \mathrm{~W}$. It is needed more than 31 1GW plants.

Answer:

a) $Q=0.2 \cdot 21.7 \mathrm{MJ} / \mathrm{kg} \cdot 2.3 \cdot 10^{11} \mathrm{~kg}=9.98 \cdot 10^{17} \mathrm{~J}=2.77 \cdot 10^{11} \mathrm{~kW} \cdot \mathrm{~h}$ $Q / E=0.073$
b) $W=\frac{2.77 \cdot 10^{11} \mathrm{~kW} \cdot \mathrm{~h}}{8766 \mathrm{~h}}=3.15 \cdot 10^{10} \mathrm{~W}$ It is needed $32 \mathbf{1 G W}$ plants.

