1. The earth (mass $=6 \cdot 10^{24} \mathrm{~kg}$) revolves around the sun with an angular velocity of $2 \cdot 10^{-7} \mathrm{rad} / \mathrm{s}$ in circular orbit of radius $1.5 \cdot 10^{8} \mathrm{~km}$. The force exerted by the sun on earth in newtons is...
$m=6 \cdot 10^{24} \mathrm{~kg}$
$\omega=2 \cdot 10^{-7} \mathrm{rad} / \mathrm{s}$
$r=1.5 \cdot 10^{11} \mathrm{~m}$

Solution.

In case of a round trajectory, centripetal acceleration of the earth is

$$
a=\omega^{2} r .
$$

The gravitational force, exerted by the sun, can be found from the second Newton law:

$$
F=m a, \quad F=m \omega^{2} r \text {. }
$$

Let check the dimension.

$$
[F]=\mathrm{kg} \cdot\left(\frac{\mathrm{rad}}{\mathrm{~s}^{2}}\right) \cdot \mathrm{m}=\mathrm{kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=N
$$

Let evaluate the quantity.
$F=6 \cdot 10^{24} \cdot\left(2 \cdot 10^{-7}\right)^{2} \cdot 1.5 \cdot 10^{11}=3.6 \cdot 10^{22}(\mathrm{~N})$.
Answer: $3.6 \cdot 10^{22} \mathrm{~N}$.

