A uniform spring of force k is connected into two pieces of length in ratio 1:2 . What is the force constant of each piece in terms of k ?

Solution:

Force constant is inversely proportional to the length of the spring (L_{1} - length of the smaller part of the spring, L_{1} - length of the bigger part of the spring):

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{k} \frac{\mathrm{~L}}{\mathrm{~L}_{1}}=\mathrm{k} \frac{\mathrm{~L}}{\frac{1}{3} \mathrm{~L}}=3 \mathrm{k} \\
& \mathrm{k}_{2}=\mathrm{k} \frac{\mathrm{~L}}{\mathrm{~L}_{2}}=\mathrm{k} \frac{\mathrm{~L}}{\frac{2}{3} \mathrm{~L}}=1.5 \mathrm{k}
\end{aligned}
$$

Answer: Force constant of the part $\frac{1}{3} \mathrm{~L}$ (smaller part) is 3 k , force constant of the part $\frac{2}{3} \mathrm{~L}$ (bigger part) is 1.5 k

