Solution

We have weight of man in surface od Earth $\boldsymbol{P}=\mathbf{7 1 0 N}$, from hence mass of man is $\boldsymbol{m}=\mathbf{7 2 . 3 8 k g}$.
We have an equation of motion on x - and y-axis's (launch angle is α, v_{0} is magnitude of initial speed)
$X=V_{0} t \cos \alpha$
$y=v_{0} t \sin \alpha-g \frac{t^{2}}{2}$.
From hence we get about flight time $t=\frac{2 v_{0} \sin \alpha}{g}=2.3 \mathrm{~s}$, distance of flight
$I=\frac{2 v_{0}{ }^{2} \cos \alpha \sin \alpha}{g}=35 \mathrm{~m}$.

From hence, we get launch angle $\tan \alpha=\frac{g t^{2}}{2 l}=0.741$

From hence we get $v_{0}=\frac{g t}{2 \sin \alpha}=\frac{g t}{2} \sqrt{1+\tan ^{-2} \alpha}=18.92 \mathrm{~m} / \mathrm{s}$

We have that the in canon

$$
\begin{aligned}
& m v_{0}=\Delta t\left(F-F_{f}-m g \sin \alpha\right) \\
& F_{f}=405 N \\
& \Delta t=0.6 s \\
& m g \sin \alpha=4227 N \\
& F=3110 N
\end{aligned}
$$

Answer:

A) $V_{0}=18.92 \mathrm{~m} / \mathrm{s}$
B) $\tan \alpha=\frac{g t^{2}}{2 l}=0.741$
C) $F=3110 \mathrm{~N}$

