1. A mass ' m ' moves with a velocity v and collides inelastically with another identical mass. After collision the 1st mass moves with velocity $v / \sqrt{3}$ in a direction perpendicular to the initial direction of motion. Find the speed of the 2nd mass after collision.

m
v
$v_{2}=v / \sqrt{3}$
$v_{1}-?$

Solution.

We have to use the law impulse conservation during inelastical collition.

$$
m \vec{v}=m \vec{v}_{1}+m \vec{v}_{2}
$$

Let write the last vector equation in projectives onto the X - and Y-axes.

$$
\left\{\begin{array}{l}
m v=m v_{1} \cos \alpha \tag{1}\\
0=m v_{1} \sin \alpha-m v_{2}
\end{array} .\right.
$$

From the Eq. (2), we can find that

$$
v_{1}=\frac{v_{2}}{\sin \alpha}=\frac{v}{\sqrt{3} \sin \alpha} .
$$

Then, let write the Eq. (1):
$m v=m \cdot \frac{v}{\sqrt{3} \sin \alpha} \cdot \cos \alpha, \quad \operatorname{tg} \alpha=\frac{1}{\sqrt{3}}, \quad \alpha=30^{\circ}$.
So, the speed of the second mass after collision:

$$
v_{1}=\frac{v}{\sqrt{3} \sin 30^{\circ}}=\frac{v}{\sqrt{3} \cdot \frac{1}{2}}=v \cdot \frac{2 \sqrt{3}}{3}
$$

Answer: $v \cdot \frac{2 \sqrt{3}}{3}$.

