

if a block up an inclined plane 30 degree with a velocity of 5 m/s ,stops after 0.5 s then ; coefficient of friction will be ?

Solution:

F_{fr} – friction force;

$\alpha = 30^\circ$ – angle of the inclined plane;

$V_0 = 5 \frac{m}{s}$ – initial velocity;

$t = 0.5s$ – time after the block stopped;

a – deceleration of the block;

Newton's second law for the block on the X-axis:

$$x: F_{fr} + mg_x = ma$$

Formula for the friction force:

$$F_{fr} = \mu N \Rightarrow$$

$$\mu N + mg_x = ma \quad (1)$$

Newton's second law for the block on the Y-axis:

$$y: N - mg_y = 0$$

$$N = mg_y$$

From the right triangle ABC:

$$\sin \alpha = \frac{mg_x}{mg} \Rightarrow mg_x = mg \sin \alpha$$

$$\cos \alpha = \frac{mg_y}{mg} \Rightarrow mg_y = mg \cos \alpha$$

$$N = mg_y = mg \cos \alpha \quad (2)$$

(2) in (1):

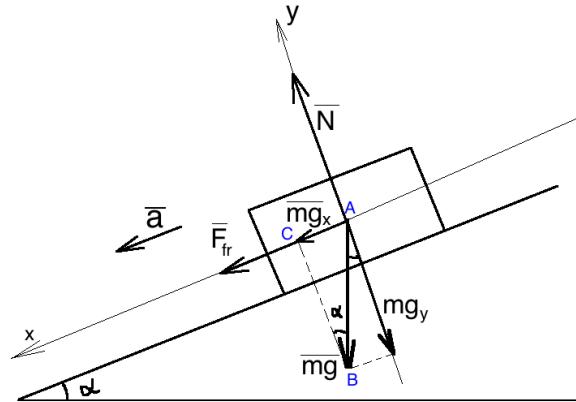
$$\mu mg \cos \alpha + mg \sin \alpha = ma$$

$$\mu g \cos \alpha + g \sin \alpha = a \quad (3)$$

Rate equation of the block along X-axis:

$$z: 0 = V - at$$

$$V = at$$


$$a = \frac{V}{t} \quad (4)$$

(3) in (4):

$$\mu g \cos \alpha + g \sin \alpha = \frac{V}{t}$$

$$\mu = \frac{\frac{V}{t} - g \sin \alpha}{g \cos \alpha} = \frac{V}{t \cdot g \cos \alpha} - \tan \alpha = \frac{5 \frac{m}{s}}{0.5 s \cdot 9.8 \frac{m}{s^2} \cdot \cos 30^\circ} - \tan 30^\circ = 0.6$$

Answer: coefficient of the friction is $\mu = 0.6$

