A grenade having mass of 10 kg flying horizontally with velocity of $10 \mathrm{~m} / \mathrm{s}$ into two fragments. The larger fragment has velocity of $25 \mathrm{~m} / \mathrm{s}$ in the direction of the grenade .the smaller fragment has velocity of $12.5 \mathrm{~m} / \mathrm{s}$ in the opposite direction. The masses of the fragments are?

The law of conservation of momentum:

$$
M v_{0}=m_{1} v_{1}+m_{2} v_{2}
$$

Sum of mass of fragments equals:

$$
M=m_{1}+m_{2}
$$

From second: $m_{1}=M-m_{2}$, substitute to first:

$$
\begin{gathered}
M v_{0}=\left(M-m_{2}\right) v_{1}+m_{2} v_{2} \\
m_{2}=M \frac{v_{0}-v_{1}}{v_{2}-v_{1}}=10 \frac{25-10}{25-(-12.5)} \mathrm{kg}=4 \mathrm{~kg}
\end{gathered}
$$

And

$$
m_{1}=M-m_{2}=M-M \frac{v_{0}-v_{1}}{v_{2}-v_{1}}=M \frac{v_{2}-v_{0}}{v_{2}-v_{1}}=10 \frac{-12.5-10}{-12.5-25}=6 \mathrm{~kg}
$$

Answer: 6 and 4 kg

