Question 36813

Let us denote $\quad m_{s}=3 \mathrm{~kg} \quad, \quad v_{s}{ }^{\prime}=200 \frac{\mathrm{~m}}{\mathrm{~s}} \quad, \quad m_{g}=1400 \mathrm{~kg}$. Index " s " means shell and " g " means gun.
In order to find recoil velocity, one has to use the law of conservation of linear momentum: $m_{s} v_{s}+m_{g} v_{g}=m_{s} v_{s}{ }^{\prime}+m_{g} v_{g}{ }^{\prime}$. Before firing the shell all velocities were zero, hence $0=m_{s} v_{s}{ }^{\prime}+m_{g} v_{g}{ }^{\prime}$, from here we get $v_{g}{ }^{\prime}=\frac{-m_{s} v_{s}{ }^{\prime}}{m_{g}} \approx-0.43 \frac{\mathrm{~m}}{\mathrm{~s}}$ - this is the recoil velocity of the gun.

