

1. On smooth incline plane of inclination = 45 degree a body takes time 2s to reach the bottom. When plane is made rough (coefficient of friction=0.75), the same body will take time?

$$\begin{array}{l} \alpha = 45^\circ \\ t = 2 \text{ s} \\ \mu = 0.75 \\ \hline t_1 - ? \end{array}$$

Solution.

Let write down the equation of the motion of the body (Newton second law) and also write in projectives onto the X - and Y -axes.

$$m \vec{a} = m \vec{g} + \vec{N} + \vec{F}.$$

$$\begin{cases} ma = mg \sin \alpha - F \\ m \cdot 0 = -mg \cos \alpha + N \end{cases}, \text{ where the friction force is } F = \mu N.$$

So, the acceleration of the body is constant:

$$a = g \sin \alpha - \frac{F}{m} = g \sin \alpha - \frac{\mu \cdot mg \cos \alpha}{m} = g(\sin \alpha - \mu \cos \alpha).$$

Let the length of the plane be l .

We can find the time of the motion of the body with the constant acceleration:

$$t = \sqrt{\frac{2l}{a}} = \sqrt{\frac{2l}{g(\sin \alpha - \mu \cos \alpha)}}.$$

So, time of the motion in the case of smooth plane ($\mu = 0$) and rough one

$$t = \sqrt{\frac{2l}{g \sin \alpha}}, \quad t_1 = \sqrt{\frac{2l}{2g(\sin \alpha - \mu \cos \alpha)}}.$$

$$\text{So, } \frac{t_1}{t} = \sqrt{\frac{2l}{2g(\sin \alpha - \mu \cos \alpha)}} : \sqrt{\frac{2l}{g \sin \alpha}}.$$

As one can find out,

$$t_1 = \frac{t}{\sqrt{1 - \mu \operatorname{ctg} \alpha}}.$$

Let check the dimension.

$$[t_1] = \text{s}.$$

Let evaluate the quantity.

$$t_1 = \frac{2}{\sqrt{1 - 0.75 \cdot \operatorname{ctg} 45^\circ}} = \frac{2}{\sqrt{1 - 0.75 \cdot 1}} = 4(\text{s}).$$

Answer: 4 s.