Let us first find the angular acceleration. Two equations for angular displacement and angular velocity are:

$$
\begin{gathered}
\phi=\nu_{0} t+\epsilon t^{2} / 2 \\
\nu_{f}=\nu_{0}+\epsilon t
\end{gathered}
$$

where ν_{0} is initial angular speed and ϵ is angular acceleration From where we can find that

$$
\phi=\nu_{0} t+\left(\nu_{f}-\nu_{0}\right) t / 2=t / 2\left(\nu_{0}+\nu_{f}\right)
$$

And we can find time of acceleration

$$
t=\frac{\phi}{1 / 2\left(\nu_{0}+\nu_{f}\right)}
$$

then we can find acceleration:

$$
\epsilon=\frac{\nu_{f}-\nu_{0}}{t}=\frac{\nu_{f}-\nu_{0}}{\frac{\phi}{1 / 2\left(\nu_{0}+\nu_{f}\right)}}
$$

And, finally, the time, needed to reach $\nu_{2}=7.28 \cdot 10^{4} \mathrm{rad} / \mathrm{s}$ speed from rest

$$
\begin{gathered}
t=\frac{\nu_{2}}{\epsilon}=\frac{\nu_{2} \phi}{\left(\nu_{f}-\nu_{0}\right)\left(1 / 2\left(\nu_{0}+\nu_{f}\right)\right)}= \\
=\frac{7.28 \cdot 10^{4} \cdot 1.53 \cdot 10^{4}}{\left(5.05 \cdot 10^{4}-1.38 \cdot 10^{4}\right)\left(1 / 2 \cdot 1.38 \cdot 10^{4}+1 / 2 \cdot 5.05 \cdot 10^{4}\right)} \approx 0.944 \mathrm{~s}
\end{gathered}
$$

