A particle starts from rest at $\mathrm{xi}=0$ and moves for 10 seconds with an acceleration of $2 \mathrm{~cm} / \mathrm{s}^{\wedge} 2$ for the next 20 seconds the acceleration of the particle is $-1 \mathrm{~cm} / \mathrm{s}^{\wedge} 2$ what is the position of the particle at the end of the motion

Solution

At the first part of the way position of the particle is giving by formula

$$
x_{1}(t)=x_{10}+v_{10} t+\frac{a_{1} t^{2}}{2}=0+0 * t+\frac{a_{1} t^{2}}{2}=\frac{a_{1} t^{2}}{2}
$$

A position of the particle after 10 seconds:

$$
x_{1}(10)=\frac{2 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} *(10 \mathrm{~s})^{2}}{2}=100 \mathrm{~cm}
$$

At the first part of the way position of the particle is giving by formula

$$
\begin{gathered}
x_{2}(t)=x_{20}+v_{20} t+\frac{a_{2} t^{2}}{2} . \\
x_{20}=x_{1}(10)=100 \mathrm{~cm}, v_{20}=2 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} * 10 \mathrm{~s}=20 \frac{\mathrm{~cm}}{\mathrm{~s}} .
\end{gathered}
$$

The position of the particle at the end of the motion

$$
x_{2}(20)=100+20 * 20+\frac{(-1) * 20^{2}}{2}=300 \mathrm{~cm}
$$

Answer: 300 cm .

