the vertical height of P above the ground is twice that of Q. A particle is projected downward with a speed of 9.8 m per second from P and simultaneously another particle is projected with same velocity from Q . both particle reach the ground simultaneously. the time taken to reach the ground is-

Solution:

$V_{Q}=V_{P}=V=9.8 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed of the particles
$t_{Q}=t_{P}=t-$ time taken to reach the ground
Equation of the motion for particle at the height P above the ground on Y-axis:
$P=V t+\frac{\mathrm{gt}^{2}}{2}$
Equation of the motion for particle at the height Q above the ground on Y -axis (velocity is directed upwards):
$Q=-V t+\frac{\mathrm{gt}^{2}}{2}$
$P=2 \cdot Q$
(1) and(2)in(3):
$2\left(-\mathrm{Vt}+\frac{\mathrm{gt}^{2}}{2}\right)=\mathrm{Vt}+\frac{\mathrm{gt}^{2}}{2}$
$-2 \mathrm{Vt}+\mathrm{gt}^{2}=\mathrm{Vt}+\frac{\mathrm{gt}^{2}}{2}$
$3 V=\frac{g t}{2}$
$\mathrm{t}=\frac{6 \mathrm{~V}}{\mathrm{~g}}=\frac{6 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=6 \mathrm{~s}$
Answer: time taken to reach the ground is 6 s .

