Question 36694

The thermal resistance of metal as a function of temperature is linear: $R(t)\!=\!R_0(1\!+\!\alpha t) \quad ,$

where R_0 is temperature at zero degrees and α is a coefficient.

Using given data at zero temperature, obtain $R_0 = 4 Ohm$. Using resistance at 100 degrees, obtain

 $10=4(1+\alpha\cdot 100) \Rightarrow \alpha=1.5\cdot 10^{-2}\frac{1}{Cels}$. Hence, resistance for current metal as a function of temperature is $R(t)=4(1+1.5\cdot 10^{-2}t)$.

Plugging in t=45, obtain R(45)=6.7 Ohm.