
A sphere of radius 20 cm, has a total charge of 3.14 micro coulomb distributed on its surface. Calculate the electric potential at points, 5 cm, 10cm, 15 cm, 20 cm,.....50 cm. what will be the possible graph?

Solution:

$q = 3.14 \times 10^{-6} \text{C}$ – charge of the sphere;

$R = 20 \text{cm} = 0.2 \text{m}$ – radius of the sphere;

r – distance to the center of the sphere;

Formula for the electric potential of the sphere :

$$\varphi = \begin{cases} \frac{qk}{r}, & \text{if } r \geq R \\ \frac{qk}{R}, & \text{if } r < R \end{cases}, \text{ where } k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$$

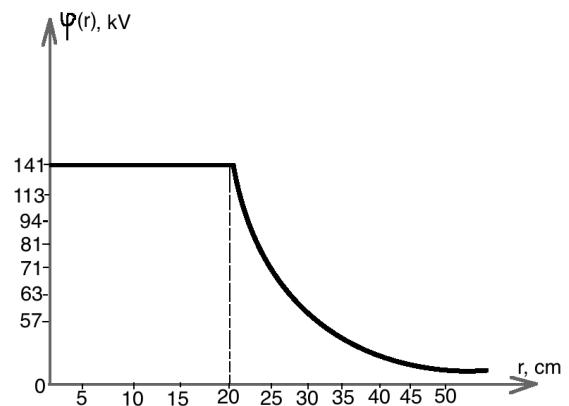
Electric potential for the radius which is smaller than the sphere radius($r = 5 \text{ cm}, 10 \text{ cm}, 15 \text{ cm}$):

$$\begin{aligned} \varphi_{5\text{cm}} &= \varphi_{10\text{cm}} = \varphi_{15\text{cm}} = \varphi_{20\text{cm}} = \frac{qk}{R} = \\ &= \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.2 \text{ m}} = 141 \times 10^3 \text{ V} \end{aligned}$$

Electric potential for the radius which is bigger than the sphere radius($r = 20 \text{ cm}, 25 \text{ cm}, 30 \text{ cm}, 35 \text{ cm}, 40\text{cm}, 45\text{cm}, 50 \text{ cm}$):

$$\varphi_{25\text{cm}} = \frac{qk}{r} = \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.25 \text{ m}} = 113 \times 10^3 \text{ V}$$

$$\varphi_{30\text{cm}} = \frac{qk}{r} = \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.3 \text{ m}} = 94 \times 10^3 \text{ V}$$


$$\varphi_{35\text{cm}} = \frac{qk}{r} = \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.35 \text{ m}} = 81 \times 10^3 \text{ V}$$

$$\varphi_{40\text{cm}} = \frac{qk}{r} = \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.4 \text{ m}} = 71 \times 10^3 \text{ V}$$

$$\varphi_{45\text{cm}} = \frac{qk}{r} = \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.45 \text{ m}} = 63 \times 10^3 \text{ V}$$

$$\varphi_{50\text{cm}} = \frac{qk}{r} = \frac{3.14 \times 10^{-6} \text{C} \cdot 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}}{0.5 \text{ m}} = 57 \times 10^3 \text{ V}$$

Possible graph for the electric potential:

Answer: $\varphi_{5\text{cm}} = \varphi_{10\text{cm}} = \varphi_{15\text{cm}} = \varphi_{20\text{cm}} = \frac{qk}{R} = 141 \times 10^3 \text{ V}$

$$\varphi_{25\text{cm}} = 113 \times 10^3 \text{ V}$$

$$\varphi_{30\text{cm}} = 94 \times 10^3 \text{ V}$$

$$\varphi_{35\text{cm}} = 81 \times 10^3 \text{ V}$$

$$\varphi_{40\text{cm}} = 71 \times 10^3 \text{ V}$$

$$\varphi_{45\text{cm}} = 63 \times 10^3 \text{ V}$$

$$\varphi_{50\text{cm}} = 57 \times 10^3 \text{ V}$$