A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 46.0-gram mass is attached at the $18.0-\mathrm{cm}$ mark, the fulcrum must be moved to the $39.2-\mathrm{cm}$ mark for balance. What is the mass of the meter stick?
$18.0 \quad l_{1} \quad 39.2 \quad l_{2} \quad 49.7$

M - mass of the meter stick, $m=46.0$ gram
Newton's first law for rotational motion:

$$
m g l_{1}=M g l_{2}
$$

Lengths l_{1} and l_{2} can be found as:

$$
\begin{aligned}
& l_{1}=39.2-18.0=21.2 \mathrm{~cm} \\
& l_{2}=49.7-39.2=10.5 \mathrm{~cm}
\end{aligned}
$$

Therefore, mass of the meter stick equals:

$$
M=m \frac{21.2}{10.5}=46.0 \frac{21.2}{10.5} g=92.9 \mathrm{~g}
$$

Answer: 92.9 g

