

We can use conversation of linear momentum:

(1)
$$m_p \cdot V_1 = m_p \cdot V_1 \cdot \frac{1}{3} + m_q \cdot V_2$$
,

where $m_p = m_q = 0.5 \text{ kg} = \frac{1}{2} \text{ kg} - \text{mass of the first ball};$

 $V_2=20\frac{m}{s}$, speed of the second ball "q" after collision. V_1- speed of the first ball p $m_p\cdot V_1-\frac{m_p}{3}\cdot V_1=V_2\cdot m_q$

$$m_p \cdot V_1 - \frac{m_p}{3} \cdot V_1 = V_2 \cdot m_q$$

Let's put values V_2 and m_q , m_p into equation. We will have:

$$0.5 \cdot V_1 - 0.16 \cdot V_1 = 10$$

 $0.34 \cdot V_1 = 10$
ANSWER: $V_1 = 29.4 \text{ m/s}$

$$0.34 \cdot V_1 = 10$$