1. A projectile is fired at an upward angle of 35.0 degrees from the top of a $225-\mathrm{m}$ cliff with a speed of $235 \mathrm{~m} / \mathrm{s}$. What will be its speed when it strikes the ground below? (Use conservation of energy.)
$\alpha=35^{\circ}$
Solution.
$h=225 \mathrm{~m}$
$v_{0}=235 \frac{\mathrm{~m}}{\mathrm{~s}}$
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
v_{1} ?
Let use the law of conservation and transformation of energy: the increasing of the kinetic energy is due to the decreasing the potential energy of the projectile.

$$
\frac{m v_{1}^{2}}{2}-\frac{m v_{0}^{2}}{2}=m g \cdot h .
$$

One can find the speed of the projectile when it strikes the ground below:

$$
v_{1}=\sqrt{v_{0}{ }^{2}+2 g h} \text {. }
$$

Let check the dimension.
$\left[v_{1}\right]=\sqrt{\left(\frac{m}{s}\right)^{2}+\frac{m}{s^{2}} \cdot m}=\sqrt{\frac{m^{2}}{s^{2}}}=\frac{m}{s}$.
Let evaluate the quantity.
$v_{1}=\sqrt{235^{2}+2 \cdot 9.8 \cdot 225} \approx 244\left(\frac{m}{s}\right)$.
Answer: $224 \frac{\mathrm{~m}}{\mathrm{~s}}$.

