A $65.3-\mathrm{kg}$ skier coasts up a snow-covered hill that makes an angle of 35.0° with the horizontal. The initial speed of the skier is $9.64 \mathrm{~m} / \mathrm{s}$. After coasting a distance of 2.37 m up the slope, the speed of the skier is $4.00 \mathrm{~m} / \mathrm{s}$. (a) Find the work done by the kinetic frictional force that acts on the skis. (b) What is the magnitude of the kinetic frictional force?

Solution

(a)

Use energy equation:
Let U (potential energy) be 0 at the bottom of the hill and be of the form $m * g * h$ elsewhere, K is kinetic energy.

So $(K+U)_{1}+W_{\text {friction }}=(K+U)_{2}$
or
$W_{\text {friction }}=K_{2}+U_{2}-K_{1}-U_{1}=\frac{1}{2} * m * v_{2}^{2}+m * g * d * \sin (\theta)-\frac{1}{2} * m * v_{1}^{2}$.
$W_{\text {friction }}=\frac{1}{2} * 65.3 * 4.00^{2}+65.3 * 9.80 * 2.37 * \sin 35.0^{\circ}-\frac{1}{2} * 65.3 * 9.64^{2}=-1642 \mathrm{~J}$.
(Negative because it removes energy from the system)
(b) Now $W_{\text {friction }}=F * d$, so
$F=\frac{W_{\text {friction }}}{d}=\frac{1642}{2.37}=693 \mathrm{~N}$.
Answer: (a) -1642 J; (b) $693 N$.

