A golf ball strikes a hard, smooth floor at an angle of 26.3° and, as the drawing shows, rebounds at the same angle. The mass of the ball is 0.0457 kg , and its speed is $58.7 \mathrm{~m} / \mathrm{s}$ just before and after striking the floor. What is the magnitude of the impulse applied to the golf ball by the floor? (Hint: Note that only the vertical component of the ball's momentum changes during impact with the floor, and ignore the weight of the ball.)

Solution

Impulse $=$ Change in momentum
Resolve the velocity vector into its rectangular components. Now, since speed before and after striking the floor remains the same, hence the horizontal component $(v \cos \theta)$ doesn't change. Hence, only the vertical components come into play.

Therefore, Initial momentum $=m v \sin \theta$.
And, final momentum $=-m v \sin \theta$.
Thus, Impulse $=-m v \sin \theta-m v \sin \theta=-2 m v \sin \theta$.
The magnitude of the impulse applied to the golf ball by the floor

$$
\Delta P=2 m v \sin \theta=2 * 0.0457 * 58.7 * \sin 26.3^{\circ}=2.38 \frac{\mathrm{~kg} * \mathrm{~m}}{\mathrm{~s}}
$$

Answer: $2.38 \frac{\mathrm{~kg} * \mathrm{~m}}{\mathrm{~s}}$.

