Task:
An artillery shell is fired at an angle of 26.8° above the horizontal ground with an initial speed of $1660 \mathrm{~m} / \mathrm{s}$.
Find the total time of flight of the shell, neglecting air resistance.

Solution:

We have a coordinate system where an axis $O y$ is perpendicular to the ground. This coordinate system is in the plane of flight of the shell. So, it's initial speed consists of two components: v_{x} and v_{y} :

$$
\begin{aligned}
& v_{x}=v \cos \alpha \\
& v_{y}=v \sin \alpha
\end{aligned}
$$

When the half time of flight of the shell will pass, the speed v_{y} will become slower because of the action of the gravity force and its value will become zero:

$$
\begin{gathered}
v_{y}^{\prime}=v_{y}-\frac{g t}{2} \\
v_{y}^{\prime}=0 \\
v_{y}=\frac{g t}{2}
\end{gathered}
$$

So, the total time of flight of the shell will be:

$$
\begin{gathered}
t=\frac{2 v \sin \alpha}{g} \\
t=\frac{2 \cdot 1660 \mathrm{~m} / \mathrm{s} \cdot \sin 26.8^{\circ}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=152.75 \mathrm{~s}
\end{gathered}
$$

THE ANSWER: $\mathbf{t = 1 5 2 . 7 5} \mathrm{s}$.

