A 100N weight rest on a 30 degrees inclined plane. Neglecting friction, how much pull must one exert to bring the weight up the plane?

Solution:

$\mathrm{mg}=100 \mathrm{~N}-$ weigth of the body;
$\alpha=30^{\circ}-$ angle of the plane with the horizontal;
The first law of equilibrium along the X axis:
$\mathrm{F}-\mathrm{mg}_{\mathrm{x}}=0$
$\mathrm{F}=\mathrm{mg}_{\mathrm{x}}$
From the right triangle $A B C$:
$\sin \alpha=\frac{\mathrm{mg}_{\mathrm{x}}}{\mathrm{mg}} ; \mathrm{mg}_{\mathrm{x}}=\mathrm{mg} \cdot \sin \alpha$
(2)in(1):
$\mathrm{F}=\mathrm{mg} \cdot \sin \alpha=100 \mathrm{~N} \cdot \sin 30^{\circ}=100 \mathrm{~N} \cdot 0.5=50 \mathrm{~N}$
Answer: to bring the weight up the plane we must act with the force bigger than 50N.

