1. For the motion of particle, velocity v depends upon displacement x as $v=20 /(3 x-2)$. If at $t=0, x=0$ then at what time t, the $x=20$?
$v=\frac{20}{3 x-2}$
$\left.x\right|_{t=0}=0$
As it is known, the velocity $v=\frac{d x}{d t}$. Then, we have a differential equation
$x_{1}=20$

$$
\frac{d x}{d t}=\frac{20}{3 x-2}
$$

Let's integrate this equation by separating the variables.
$\frac{d x}{d t}=\frac{20}{3 x-2}$,
$(3 x-2) d x=20 d t$,
$\int_{0}^{x}(3 x-2) d x=\int_{0}^{t} 20 d t$,
$\left.\left(\frac{3 x^{2}}{2}-2 x\right)\right|_{0} ^{x}=\left.20 t\right|_{0} ^{t}$,
$\frac{3 x^{2}}{2}-2 x=20 t$.
So, the time depends upon displacement as

$$
t=\frac{1}{20}\left(\frac{3 x^{2}}{2}-2 x\right)
$$

Now, we can calculate the time, at which $x=20$:

$$
t_{1}=\frac{1}{20}\left(\frac{3 x_{1}^{2}}{2}-2 x_{1}\right) .
$$

Let evaluate the quantity.
$t_{1}=\frac{1}{20}\left(\frac{3 \cdot 20^{2}}{2}-2 \cdot 20\right)=28$.
Answer: the time is equal to 28.

