A ferry is crossing a river. The ferry is headed due north with a speed of $2.5 \mathrm{~m} / \mathrm{s}$ relative to the water and the river's velocity is $3.5 \mathrm{~m} / \mathrm{s}$ to the east. Find the direction in which the ferry is moving_measured from due east with counterclockwise postive)

Solution:
$\mathrm{V}_{\mathrm{f}, \mathrm{r}}=2.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ - velocity of the ferry relative to the water;
$V_{\text {river }}=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}-$ velocity of the river;
α

- the angle between east direction and the direction of the ferry's motion Formula for the relative velocity of the track:
$\overrightarrow{\mathrm{V}}_{\mathrm{f}, \mathrm{r}}=\overrightarrow{\mathrm{V}}_{\text {ferr } y}-\overrightarrow{\mathrm{V}}_{\text {river }}$
$\overrightarrow{\mathrm{V}}_{\text {ferry }}=\overrightarrow{\mathrm{V}}_{\mathrm{f}, \mathrm{r}}+\overrightarrow{\mathrm{V}}_{\text {river }}$
From the right triangle $A B C$:
$\tan \alpha=\frac{\mathrm{V}_{f, r}}{\mathrm{~V}_{\text {river }}} \Rightarrow \alpha=\arctan \left(\frac{\mathrm{V}_{f, r}}{\mathrm{~V}_{\text {river }}}\right)=\arctan \left(\frac{2.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{3.5 \frac{\mathrm{~m}}{\mathrm{~s}}}\right)=36^{\circ}$
Answer: the angle between east direction and the direction of the ferry's motion is 36°

