a point p is the contact point of wheel on ground which roll on ground without slipping the value of displacement of point p when wheel completes half rotation (if radius is 1 m)

Solution:

$\mathrm{R}=1 \mathrm{~m}$ - radius of the wheel.
In one rotation of the wheel point p moves a distance equal to the circumference of the wheel:

$$
D_{\text {rotation }}=2 \pi R
$$

Hence, if the wheel completes half rotation, the value of the displacement of the point p will be equal to the half of the total displacement of the point p :

$$
D_{\text {halfrotation }}=\frac{D_{\text {rotation }}}{2}=\frac{2 \pi \mathrm{R}}{2}=\pi \mathrm{R}=3.14 \mathrm{~m}
$$

Answer: slipping the value of displacement of point p when wheel completes half rotation is 3.14 m

