the centre of the mass of solid cone along the centre of base to vertex is at ?

Solution:

h - height of the cone;
m - mass of the cone;
R - radius of the base of the cone;

First, we can find the density of the cone:
$\rho=\frac{m}{V}=\frac{m}{\frac{\pi R^{2} h}{3}}=\frac{3 m}{\pi R^{2} h}$
Radius dependence of the height x :
$r(x)=R \cdot \frac{x}{h}$, where $x-$ distance to the vertex
Now, let us split the cone on discs height dx. Volume of the disc on the height $d x$ will be:

$$
d V=\pi r^{2} d x=\frac{\pi R^{2} x^{2} d x}{h^{2}}
$$

Mass of this disc will be:

$$
\mathrm{dm}=\rho \cdot \mathrm{dV}=\frac{3 \mathrm{mx}^{2} \mathrm{dx}}{\mathrm{~h}^{3}}
$$

Position of the center of mass is determined by the sum of the $\mathrm{dm} \cdot \mathrm{x}$ divided by the total mass m:

$$
\mathrm{x}_{\text {centr }}=\frac{3}{\mathrm{~h}^{3}} \int_{0}^{\mathrm{h}} \mathrm{x}^{3} \mathrm{dx}=3 \cdot \frac{\mathrm{~h}}{4}
$$

Hence, the center of mass is located at a distance $\frac{3}{4}$ the height of the cone of the vertex or $\frac{h}{4}$ of the center of base.

Answer: center of mass of the solid cone is located at a distance $\frac{3}{4}$ the height of the cone of the vertex or $\frac{1}{4} h$ of the center of base.

