

the centre of the mass of solid cone along the centre of base to vertex is at ?

Solution:

h – height of the cone;

m – mass of the cone;

R – radius of the base of the cone;

First, we can find the density of the cone:

$$\rho = \frac{m}{V} = \frac{m}{\frac{\pi R^2 h}{3}} = \frac{3m}{\pi R^2 h}$$

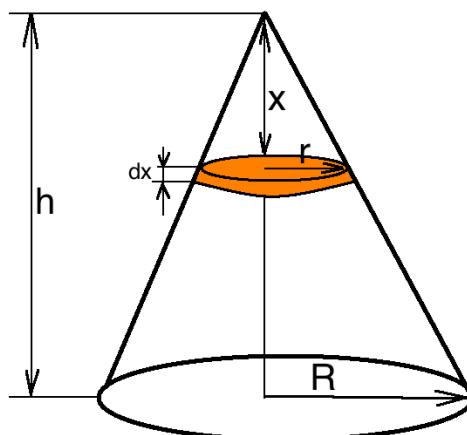
Radius dependence of the height x :

$$r(x) = R \cdot \frac{x}{h}, \text{ where } x \text{ – distance to the vertex}$$

Now, let us split the cone on discs height dx . Volume of the disc on the height dx will be:

$$dV = \pi r^2 dx = \frac{\pi R^2 x^2 dx}{h^2}$$

Mass of this disc will be:


$$dm = \rho \cdot dV = \frac{3mx^2 dx}{h^3}$$

Position of the center of mass is determined by the sum of the $dm \cdot x$ divided by the total mass m :

$$x_{\text{centr}} = \frac{3}{h^3} \int_0^h x^3 dx = 3 \cdot \frac{h}{4}.$$

Hence, the center of mass is located at a distance $\frac{3}{4}h$ the height of the cone of the vertex or $\frac{h}{4}$ of the center of base.

Answer: center of mass of the solid cone is located at a distance $\frac{3}{4}h$ the height of the cone of the vertex or $\frac{1}{4}h$ of the center of base.

