a disc and a ring of same mass are rolling down fritionless inclined plane with same kinetic energy .the ratio of velocity of disc to velocity of ring is ?

Solution:

Kinetic energies of the rind and disc are equal:
$\mathrm{E}_{\text {disc }}=\mathrm{E}_{\text {ring }}$
The kinetic energy of rotational motion:
$E=\frac{J \cdot \omega^{2}}{2}+\frac{m \cdot \vartheta^{2}}{2}$
, where J - moment of inertia, $\omega=\frac{\vartheta}{\mathrm{r}}$ - angular velocity, r - radius, m - mass.
Moment of inertia of the disc and the ring:
$\mathrm{J}_{\text {disk }}=\frac{\mathrm{mr}_{\text {disc }}^{2}}{2} \Rightarrow$
$\mathrm{E}_{\text {disc }}=\frac{\mathrm{mr}}{2 \cdot 2} \cdot \omega_{\text {disc }}^{2} \cdot \frac{\mathrm{~m} \cdot \vartheta_{\text {disc }}^{2}}{2}=\frac{m r_{\text {disc }}^{2}}{4}\left(\frac{\vartheta_{\text {disc }}}{r_{\text {disc }}}\right)^{2}+\frac{m \cdot \vartheta_{\text {disc }}^{2}}{2}=\frac{m \vartheta_{\text {disc }}^{2}}{4}+\frac{m \cdot \vartheta_{\text {disc }}^{2}}{2}$
$=\frac{3 \mathrm{~m} \cdot \vartheta_{\text {disc }}^{2}}{2}$
$\mathrm{J}_{\text {ring }}=\mathrm{mr}^{2} \Rightarrow$
$E_{\text {ring }}=\frac{m r_{\text {ring }}^{2}}{2} \cdot \omega_{\text {ring }}^{2}+\frac{m \cdot \vartheta_{\text {ring }}^{2}}{2}=\frac{m r_{\text {ring }}^{2}}{4}\left(\frac{\vartheta_{\text {ring }}}{r_{\text {ring }}}\right)^{2}+\frac{m \cdot \vartheta_{\text {ring }}^{2}}{2}=$
$=\frac{\mathrm{m} \vartheta_{\text {ring }}^{2}}{2}+\frac{\mathrm{m} \cdot \vartheta_{\text {ring }}^{2}}{2}=\mathrm{m} \cdot \vartheta_{\text {ring }}^{2}$
(3) and(2)in(1):
$\frac{3 \mathrm{~m} \cdot \vartheta_{\text {disc }}^{2}}{2}=\mathrm{m} \cdot \vartheta_{\text {ring }}^{2}$
$\frac{\vartheta_{\text {disc }}^{2}}{\vartheta_{\text {ring }}^{2}}=\frac{2}{3}$
$\frac{\vartheta_{\text {disc }}}{\vartheta_{\text {ring }}}=\sqrt{\frac{2}{3}}=0.8$
Answer: the ratio of velocity of disc to velocity of ring is 0.8 .

