a person holds ablock weighing 4 kg between his hands and keeps it from falling down by pressing it with his hands .if the force exerted by each hand is 50 n , find the coefficient of friction between the hand and the block.

Solution:

$\mathrm{F}_{1}=\mathrm{F}_{2}=50 \mathrm{~N}-$ pressing force;
$\mathrm{m}=4 \mathrm{~kg}-$ mass of the adblock;
First, we can find the reaction force that acts on the block (hands are symmetrical, so we can consider only one hand):
Newton's third law along the X -axis:
$\mathrm{F}_{1}=\mathrm{N}_{1}$;
$\mathrm{F}_{2}=\mathrm{N}_{2}$;
The first law of equilibrium along the Y -axis:
$\mathrm{mg}-\mathrm{F}_{\mathrm{fr} 1}-\mathrm{F}_{\mathrm{fr} 2}=0$
Formula for the friction force:
$\mathrm{F}_{\text {friction }}=\mu \mathrm{N}$, where μ - coefficient of friction \Rightarrow
$\mathrm{F}_{\mathrm{fr} 1}=\mu \mathrm{N}_{1}=\mu \mathrm{F}_{1}$
$\mathrm{F}_{\mathrm{fr} 2}=\mu \mathrm{N}_{2}=\mu \mathrm{F}_{2}$
(3) and (2) in(1):
$\mathrm{mg}-\mu \mathrm{F}_{1}-\mu \mathrm{F}_{2}=0$
$\mu=\frac{\mathrm{mg}}{\mathrm{F}_{1}+\mathrm{F}_{2}}=\frac{4 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~N}}{\mathrm{~kg}}}{2 \cdot 50 \mathrm{~N}}=0.4$
Answer: coefficient of friction is 0.4 .

