

Answer on Question 3655, Physics, Mechanics | Kinematics | Dynamics

V_H - horizontal velocity

V_V - vertical velocity

$$V_0 = 35 \text{ m/s}, \alpha = 53^\circ, H_0 = 1 \text{ m}, L = 110 \text{ m}$$

$$V_H = V_0 \cos(\alpha) = 35 \text{ m/s} \cdot \cos(53^\circ) = 35 \text{ m/s} \cdot 0.6018 = 21.0630 \text{ m/s}$$

$$V_V(t) = V_0 \sin(\alpha) - gt = 35 \cdot \sin(53^\circ) - 9.8t = 35 \cdot 0.7986 - 9.8t = (27.9510 - 9.8t) \text{ m/s}$$

Let's find H_{\max} .

$$V_V(T) = 0$$

$$V_0 \sin(\alpha) = gT \Rightarrow T = (V_0 \sin(\alpha))/g = (35 \text{ m/s} \cdot 0.7986)/(9.8 \text{ m/s}^2) = 2.8521 \text{ s}$$

$$H_{\max} = H_0 + TV_V(0) - (gT^2)/2 = 1 + 2.8521 \cdot 27.9510 - (9.8 \cdot 2.8521^2)/2 = 40.8601 \text{ m}$$

Let t_f be the time when ball moved 110m horizontal.

$$t_f = L/V_H = 110/21.0630 = 5.2224 \text{ s}$$

$$H_f = H_{\max} - (g(t_f - T)^2)/2 = 40.8601 - (9.8 \cdot (5.2224 - 2.8521)^2)/2 = 13.3303 \text{ m}$$

So, the ball will fly 13.3303 meters higher the bench.

Now let write some relations which will help us to define on which bench ball will hit:

$$h = H_{\max} - \frac{g t^2}{2},$$

$$L_0 + x = V_H t,$$

where $L_0 = L - V_H T$ is a horizontal distance from the highest point of trajectory to the first bench. According to this definition the point $h = x$ will show us in what bench the ball fell:

$$\frac{g t^2}{2} + V_H t - (L_0 + H_{\max}) = 0 \rightarrow T_{\text{bench}} = 2.65 \text{ s}$$

Then total time of flight before the conditions come true is $t_{\text{tot}} = T + T_{\text{bench}} = 5.5 \text{ s}$. And total distance accounted from the starting point is $L_{\text{tot}} = V_H T_{\text{tot}} = 21 \cdot 5.5 = 115.6 \text{ m}$. It is clearly shows that the ball will hit sixth bench.