A stone thrown from the surface of the earth at a speed of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 600 to the horizontal. The radius of curvature of the upper root point of the trajectory

Solution:

Gravitational acceleration change velocity amount only on the vertical component, the horizontal component then remains constant:
$V_{x}=$ const $=V \cos \alpha($ from a right triangle $)$
$\alpha=60^{\circ}, \cos 60^{\circ}=\frac{1}{2}$
$V_{x}=V \cos \alpha=\frac{V}{2}$
At the topmost point of the trajectory velocity of the body is equal to the horizontal component of the initial velocity, so that the vertical component of the velocity is zero:

2: $V_{2}=V_{x}=\frac{V}{2}$
Formula for the centripetal acceleration at the topmost point (2):
$a_{c}=\frac{V_{x}^{2}}{R}=g($ the only acceleration that acts on the ball)
$R=\frac{V_{x}^{2}}{a_{c}}=\frac{\left(\frac{V}{2}\right)^{2}}{g}=\frac{V^{2}}{4 g}=\frac{\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{4 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=2.6 \mathrm{~m}$
Answer: the radius of curvature of the upper root point of the trajectory is 2.6 m

