Let's find out how much boiling water is necessary to raise the temperature of each litre from 25 C water to 37 C .
Heat lost by hot water $=$ heat gained by cold water:
ΔH_{c} hot water $=-\Delta H_{h}$ cold water
$\mathrm{m}_{\mathrm{c}} \mathrm{C} \Delta \mathrm{T}_{\mathrm{c}}$ cold water $=-\mathrm{m}_{\mathrm{h}} \mathrm{C} \Delta \mathrm{T}_{\mathrm{h}}$ hot water

The difference in heat capacities is negligible and can be canceled out:
$m_{c} \Delta T_{c}=-m_{h} \Delta T_{h}$
$\mathrm{m}_{\mathrm{h}} / \mathrm{m}_{\mathrm{c}}=\Delta \mathrm{T}_{\mathrm{c}} / \Delta \mathrm{T}_{\mathrm{h}}$
$\mathrm{m}_{\mathrm{h}} / \mathrm{m}_{\mathrm{c}}=12 / 63=0.19 \approx 0.2$
So, for each liter of cold water we need 0.21 of boiling water.
If the amount of water in bath is 1501 then you need
$\mathrm{m}_{\mathrm{h}}=0.2 \mathrm{~m}_{\mathrm{c}}=301$ of boiling water.

