You have a boat with a motor that propels it at vboat $=4.5 \mathrm{~m} / \mathrm{s}$ relative to the water. You point it directly across the river and find that when you reach the other side, you have traveled a total distance of 27 m (indicated by the dotted line in the diagram) and wound up 14 m downstream. What is the speed of the current?

Solution:

$\mathrm{L}=27 \mathrm{~m}-$ total distance;
$\mathrm{d}=14 \mathrm{~m}-$ distance that boat wound up downstream;
$V_{\text {boat }}=4.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ - velocity of the boat reative to the water;
$\mathrm{V}_{\text {current }}$ - velocity of the current;
First, we can find the width of the current from the right triangle $A B C$:

$$
\mathrm{h}=\sqrt{\mathrm{L}^{2}-\mathrm{d}^{2}}
$$

Triangles $A B C$ and $B D E$ are similar:

$$
\begin{gathered}
A B C \sim B D E: \frac{V_{\text {boat }}}{V_{\text {current }}}=\frac{h}{d} \\
\frac{V_{\text {boat }}}{V_{\text {current }}}=\frac{\sqrt{\mathrm{L}^{2}-\mathrm{d}^{2}}}{\mathrm{~d}} \\
\mathrm{~V}_{\text {current }}=\frac{\mathrm{d} \cdot \mathrm{~V}_{\text {boat }}}{\sqrt{\mathrm{L}^{2}-\mathrm{d}^{2}}}=\frac{14 \mathrm{~m} \cdot 4.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{\sqrt{(27 \mathrm{~m})^{2}-(14 \mathrm{~m})^{2}}}=2.7 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: speed of the current is $2.7 \frac{\mathrm{~m}}{\mathrm{~s}}$.

