

1. Runner A is initially 6.8 km west of a flagpole and is running with a constant velocity of 5.4 km/h due east. Runner B is initially 4.4 km east of the flagpole and is running with a constant velocity of 3.8 km/h due west. What will be the distance of the two runners from the flagpole when their paths cross?

$$l_1 = 6.8 \text{ km}$$

$$v_1 = 5.4 \frac{\text{km}}{\text{h}}$$

$$l_2 = 4.4 \text{ km}$$

$$v_2 = 3.8 \frac{\text{km}}{\text{h}}$$

$$d - ?$$

Solution.

Let introduce the coordinate system with X -axis in the direction to east. Let the flagpole be the center of this coordinate system.

The initial coordinates of the runners are $x_A = -6.8$ and $x_B = 4.4$, respectively.

The equations of the movement of the runners are:

$$x_1 = x_{1A} + v_{Ax} \cdot t, \quad x_2 = x_{1B} + v_{Bx} \cdot t,$$

where $v_{Ax} = 5.4$ and $v_{Bx} = -3.8$ are the projections of the velocity of the runners into X -axis.

When the paths of the runners cross, their coordinates become equal:

$$x_1 = x_2, \quad x_A + v_{Ax} \cdot t = x_B + v_{Bx} \cdot t, \quad t_0 = \frac{x_B - x_A}{v_{Ax} - v_{Bx}}$$

That is the time, when the runners meet each other.

The distance of the two runners from the flagpole at this time is

$$d = |x_1(t_0)|, \quad d = \left| x_A + v_{Ax} \cdot \frac{x_B - x_A}{v_{Ax} - v_{Bx}} \right|.$$

Let check the dimension.

$$[d] = \text{km} + \frac{\text{km}}{\text{h}} \cdot \frac{\text{km}}{\text{h}} = \text{km}.$$

Let evaluate the quantity.

$$d = \left| -6.8 + 5.4 \cdot \frac{4.4 - (-6.8)}{5.4 - (-3.8)} \right| = 0.23 \text{ (km)}.$$

Answer: 0.23 km.