

Question 35246

Let t_i denote time of moving through interval L_i with velocity v_i . Using this notation,
 $t_1=0.5\text{ h}$; $v_1=80\frac{\text{km}}{\text{h}}$; $t_2=\frac{12}{60}\text{ h}$; $v_2=105\frac{\text{km}}{\text{h}}$; $t_3=\frac{45}{60}\text{ h}$; $v_3=40\frac{\text{km}}{\text{h}}$. Also, time spent for buying
gas is $t'=\frac{21}{60}\text{ h}$.

a)

The average speed is the total distance divided by time it took to cover this distance, $v=\frac{L}{t}$. In
this case, time is sum of three times moving on three intervals plus time needed to buy gas:

$$t=t_1+t_2+t_3+t'=0.5+\frac{12}{60}+\frac{45}{60}+\frac{21}{60}=\frac{9}{5}\text{ h}.$$
 Total distance is $L=v_1t_1+v_2t_2+v_3t_3=91\text{ km}$.

$$\text{Hence, average velocity is } v=\frac{91\text{ km}}{\frac{9}{5}\text{ h}}=\frac{455}{9}\frac{\text{km}}{\text{h}}\approx 50.56\frac{\text{km}}{\text{h}}.$$

b) The total distance traveled is already calculated in a):

$$L=v_1t_1+v_2t_2+v_3t_3=0.5\cdot 80+\frac{12}{60}\cdot 105+\frac{45}{60}\cdot 40=91\text{ km}.$$