Question 35246

Let t_{i} denote time of moving through interval L_{i} with velocity v_{i}. Using this notation, $t_{1}=0.5 h ; v_{1}=80 \frac{\mathrm{~km}}{\mathrm{~h}} ; t_{2}=\frac{12}{60} h ; v_{2}=105 \frac{\mathrm{~km}}{\mathrm{~h}} ; t_{3}=\frac{45}{60} h ; v_{3}=40 \frac{\mathrm{~km}}{\mathrm{~h}}$. Also, time spent for buying gas is $t^{\prime}=\frac{21}{60} h$.
a)

The average speed is the total distance divided by time it took to cover this distance, $v=\frac{L}{t}$. In this case, time is sum of three times moving on three intervals plus time needed to buy gas: $t=t_{1}+t_{2}+t_{3}+t^{\prime}=0.5+\frac{12}{60}+\frac{45}{60}+\frac{21}{60}=\frac{9}{5} h$. Total distance is $L=v_{1} t_{1}+v_{2} t_{2}+v_{3} t_{3}=91 \mathrm{~km}$.
Hence, average velocity is $v=\frac{91 \mathrm{~km}}{\frac{9}{5} h}=\frac{455}{9} \frac{\mathrm{~km}}{\mathrm{~h}} \approx 50.56 \frac{\mathrm{~km}}{\mathrm{~h}}$.
b) The total distance traveled is already calculated in a):

$$
L=v_{1} t_{1}+v_{2} t_{2}+v_{3} t_{3}=0.5 \cdot 80+\frac{12}{60} \cdot 105+\frac{45}{60} \cdot 40=91 \mathrm{~km} .
$$

