Question. A 1600-kg car is traveling at $20 \mathrm{~m} / \mathrm{s}$ around a curve with a radius of 120 m . What is the angular momentum of the car?

Solution. Let us put a origin of a coordinate system in the center of the curve. In this coordinate system we can find the angular momentum of the car from equation $L=m v r \sin \alpha, \alpha$ is the angle between velocity of the car and the radius of the curve. Since $\alpha=90^{\circ}$, so $\sin \alpha=1$ and

$$
\begin{gathered}
L=m v r \\
L=1600 \cdot 20 \cdot 120=3,84 \cdot 10^{6} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
\end{gathered}
$$

Answer: $L=3,84 \cdot 10^{6} \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$.

