A spaceship moving with an initial velocity of 58.0 meters/second experiences a uniform acceleration and attains a final velocity of 153 meters/second. What distance has the spaceship covered after 12.0 seconds?
A.
6.96×102 meters
B.
1.27×103 meters
C.
5.70×102 meters
D.
1.26×102 meters
E.
6.28×102 meters

Solution:

$\mathrm{V}_{1}=58 \frac{\mathrm{~m}}{\mathrm{~s}}-$ the initial velocity of the spaceship;
$\mathrm{V}_{2}=153 \frac{\mathrm{~m}}{\mathrm{~s}}$ - final velocity of the spaceship;
d - distance that spaceship covered after 12 s ;
$t=12 s-$ time to cover the distance d;

Assuming constant acceleration we can use the rate equation and motion equation the to find the the distance that spacesip covered after 12 s . Rate equation alond the X axis:
$\mathrm{V}_{2}=\mathrm{V}_{1}+\mathrm{at}$
$a=\frac{V_{2}-V_{1}}{t}$
Motion equation alond the Y axis:
$d=V_{1} t+\frac{\mathrm{at}^{2}}{2}$
(1) in(2):
$d=V_{1} t+\frac{\left(\frac{V_{2}-V_{1}}{t}\right) \mathrm{t}^{2}}{2}=V_{1} t+\frac{\left(V_{2}-V_{1}\right) t}{2}=\frac{\left(V_{1}+V_{2}\right) t}{2}=\frac{\left(153 \frac{\mathrm{~m}}{\mathrm{~s}}+58 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \cdot 12 \mathrm{~s}}{2}=$ $=12.7 \times 10^{3} \mathrm{~m}$
Answer: distance that spaceship covered after 12 s is B) $12.7 \times 10^{3} \mathrm{~m}$

