

1. A ranger in a national park is driving at 28.0 mi/h when a deer jumps into the road 155 ft ahead of the vehicle. After a reaction time t , the ranger applies the brakes to produce an acceleration of $a = -9.00 \text{ ft/s}^2$. What is the maximum reaction time allowed if she is to avoid hitting the deer?

$$v = 28 \frac{\text{mi}}{\text{h}} = 41.1 \frac{\text{ft}}{\text{s}}$$

$$d = 155 \text{ ft}$$

$$a = -9 \frac{\text{ft}}{\text{s}^2}$$

$$t - ?$$

Solution.

The maximum reaction time is for the case when the ranger stopped directly opposite the deer, so he covers the distance d . The movement of the ranger's car is with the constant velocity during the time t , and then with the constant acceleration until stopping the car:

$$d = v \cdot t + \frac{v^2}{2|a|}.$$

We can express the time from the last equation:

$$t = \frac{d}{v} - \frac{v}{2|a|}.$$

Let check the dimension.

$$[t] = \frac{\text{ft}}{\frac{\text{ft}}{\text{s}} - \frac{\text{ft}}{\frac{\text{ft}}{\text{s}^2}}} = \text{s}.$$

Let evaluate the quantity.

$$t = \frac{155}{41.1} - \frac{41.1}{2 \cdot 9} = 1.49 \text{ (s)}.$$

Answer: 1.49 s.