1. A ranger in a national park is driving at $28.0 \mathrm{mi} / \mathrm{h}$ when a deer jumps into the road 155 ft ahead of the vehicle. After a reaction time $t$, the ranger applies the brakes to produce an acceleration of $a=-9.00$ $\mathrm{ft} / \mathrm{s} 2$. What is the maximum reaction time allowed if she is to avoid hitting the deer?
$v=28 \frac{\mathrm{mi}}{\mathrm{h}}=41.1 \frac{\mathrm{ft}}{\mathrm{s}}$
$d=155 \mathrm{ft}$
$a=-9 \frac{f t}{s^{2}}$
$t-$ ?

## Solution.

The maximum reaction time is for the case when the ranger stopped directly opposite the deer, so he covers the distance $d$. The movement of the ranger's car is with the constant velocity during the time $t$, and then with the constant acceleration until stopping the car:

$$
d=v \cdot t+\frac{v^{2}}{2|a|} .
$$

We can express the time from the last equation:

$$
t=\frac{d}{v}-\frac{v}{2|a|} \text {. }
$$

Let check the dimension.
$[t]=\frac{f t}{\frac{f t}{s}}-\frac{\frac{f t}{s}}{\frac{f t}{s^{2}}}=s$.
Let evaluate the quantity.
$t=\frac{155}{41.1}-\frac{41.1}{2 \cdot 9}=1.49(\mathrm{~s})$.
Answer: 1.49 s .

