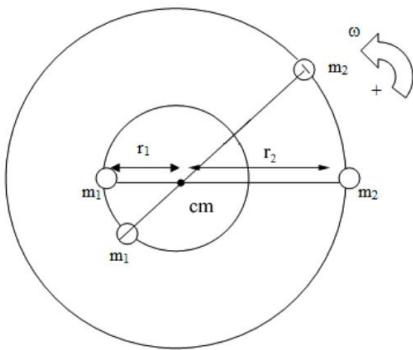
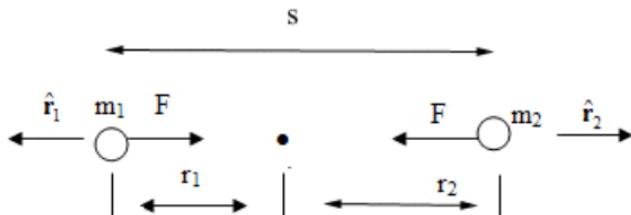


Consider a double star system under the influence of the gravitational force between the stars. Star 1 has mass $m_1 = 1.42 \times 10^{31}$ kg and Star 2 has mass $m_2 = 2.62 \times 10^{31}$ kg. Assume that each star undergoes uniform circular motion about the center of mass of the system (cm). In the figure below r_1 is the distance between Star 1 and cm, and r_2 is the distance between Star 2 and cm. If the stars are always a fixed distance $s = r_1 + r_2 = 3.48 \times 10^{18}$ m apart, what is the period of the orbit (in s)?

Solution



Choose radial coordinates for each star with origin at center of mass. Let \hat{r}_1 be a unit vector at Star 1 pointing radially away from the center of mass. Let \hat{r}_2 be a unit vector at Star 2 pointing radially away from the center of mass. The force diagrams on the two stars are shown in the figure below.



From Newton's Second Law, $\bar{F}_1 = m_1 \bar{a}_1$, for Star 1 in the radial direction is

$$\hat{r}_1: -G \frac{m_1 m_2}{s^2} = -m_1 r_1 \omega^2.$$

We can solve this for r_1 ,

$$r_1 = G \frac{m_2}{\omega^2 s^2}.$$

Newton's Second Law, $\bar{F}_2 = m_2 \bar{a}_2$, for Star 2 in the radial direction is

$$\hat{r}_2: -G \frac{m_1 m_2}{s^2} = -m_2 r_2 \omega^2.$$

We can solve this for r_2 ,

$$r_2 = G \frac{m_1}{\omega^2 s^2}.$$

Since s , the distance between the stars, is constant

$$s = r_1 + r_2 = G \frac{m_1}{\omega^2 s^2} + G \frac{m_1}{\omega^2 s^2} = G \frac{(m_2 + m_1)}{\omega^2 s^2}.$$

Thus the angular velocity is

$$\omega = \left(G \frac{(m_2 + m_1)}{s^3} \right)^{\frac{1}{2}}$$

and the period is then

$$T = \frac{2\pi}{\omega} = \left(\frac{4\pi^2 s^3}{G(m_2 + m_1)} \right)^{\frac{1}{2}}.$$

$$T = \sqrt{\frac{4\pi^2 (3.48 \times 10^{18})^3}{6.67 \times 10^{-11} (1.42 \times 10^{31} + 2.62 \times 10^{31})}} = 7.85 \times 10^{17} \text{ s.}$$

Answer: $7.85 \times 10^{17} \text{ s.}$