A boy aims a target at a horizontal distance of 60 m . If the muzzle speed of bullet is $600 \mathrm{~m} / \mathrm{s}$, then the height above the target which he should aim is 1) 5 cm 2) 10 cm 3$) 15 \mathrm{~cm} \mathrm{4}$) 20 cm .

Solution

The acceleration of gravity $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
The time to cover 60 m

$$
t=\frac{s}{v}=\frac{60 \mathrm{~m}}{600 \mathrm{~m} / \mathrm{s}}=0.1 \mathrm{~s}
$$

The downward distance moved in this time

$$
h=\frac{g t^{2}}{2}=\frac{10 \frac{\mathrm{~m}}{s^{2}} *(0.1 \mathrm{~s})^{2}}{2}=0.05 \mathrm{~m}=5 \mathrm{~cm}
$$

Answer: 1) 5 cm .

