In a performance test, each of two cars takes 8.3 s to accelerate from rest to $29 \mathrm{~m} / \mathrm{s}$. Car A has a mass of 1361 kg , and car B has a mass of 1871 kg . Find the net average force that acts on (a) car A and (b) car B during the test.

Solution:

$\mathrm{V}=29 \frac{\mathrm{~m}}{\mathrm{~s}}$ - velocity of the cars;
$\mathrm{t}=8.3 \mathrm{~s}$ - time required to reach the speed V
$\mathrm{m}_{\mathrm{A}}=1361 \mathrm{~kg}$ - mass of the car A ;
$m_{B}=1871 \mathrm{~kg}-$ mass of the car B;
$\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}$ - net forces that acts on cars A and B during the test.

First, we can find the acceleration of the car. Rate equation along the X axis:

$$
\begin{aligned}
V & =\mathrm{at} \\
\mathrm{a} & =\frac{\mathrm{V}}{\mathrm{t}}
\end{aligned}
$$

Newton's second law for the car:

$$
\begin{gathered}
\mathrm{F}=\mathrm{ma}=\frac{\mathrm{mV}}{\mathrm{t}} \Rightarrow \\
\mathrm{~F}_{\mathrm{A}}=\frac{\mathrm{m}_{\mathrm{A}} \mathrm{~V}}{\mathrm{t}}=\frac{1361 \mathrm{~kg} \cdot 29 \frac{\mathrm{~m}}{\mathrm{~s}}}{8.3 \mathrm{~s}}=4755 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{B}}=\frac{\mathrm{m}_{\mathrm{B}} \mathrm{~V}}{\mathrm{t}}=\frac{1871 \mathrm{~kg} \cdot 29 \frac{\mathrm{~m}}{\mathrm{~s}}}{8.3 \mathrm{~s}}=6537 \mathrm{~N}
\end{gathered}
$$

Answer: a) 4755N
b) 6537 N

