A ball is thrown with an angle of 12 degrees to the horizon with a speed of $15 \mathrm{~m} / \mathrm{s}$. What are it's vertical and horizontal components

Solution

$\mathrm{V}_{0}=15 \frac{\mathrm{~m}}{\mathrm{~s}}-$ initial velocity of the stone;
$\alpha=12^{\circ}-$ angle, above the horizontal, of the stone's initial velocity;
Horizontal and vertical components from the right triangle $A B C$:
$\Delta A B C: \cos \alpha=\frac{V_{x}}{V_{0}}$
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{0} \cdot \cos \alpha=15 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos 12^{\circ}=14.7 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\triangle A B C: \sin \alpha=\frac{V_{y}}{V_{0}}$
$\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{0} \cdot \sin \alpha=15 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin 12^{\circ}=3.1 \frac{\mathrm{~m}}{\mathrm{~s}}$
Answer: Horizontal component : $\mathrm{V}_{\mathrm{x}}=14.7 \frac{\mathrm{~m}}{\mathrm{~s}}$; vertical component $\mathrm{V}_{\mathrm{y}}=3.1 \frac{\mathrm{~m}}{\mathrm{~s}}$

