Question 36330

Let us first write the first law of thermodynamics $\delta Q=d U+p d V$.
For constant pressure, $\delta Q=d U$. Hence, heat capacity for constant pressure is

$$
C_{V}=\left(\frac{\delta Q}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

For an ideal gas, internal energy U is the function only of temperature ($U=U(T)$). Hence, $C_{V}=\frac{d U}{d T}$.
Now, by definition

$$
C_{P}=\left(\frac{\delta Q}{d T}\right)_{P}=\left(\frac{d U+p d V}{d T}\right)_{P}=\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P} .
$$

For one mole of ideal gas, equation of state is $P V=R T$, which yields $\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{R}{P}$ and $\left(\frac{\partial U}{\partial T}\right)_{P}=\frac{d U}{d T}=C_{V}$. . Plugging in last two equalities into formula for C_{P}, obtain $C_{P}=C_{V}+R$ - this is Mayer's formula.
This formula works only for ideal gas, because we have used the equation $P V=R T$ for ideal gas, while deriving it.

