

1. A vector A which has magnitude 8.0 is added to a vector B which lies on x -axis. The sum of these two vectors lies on y -axis and has a magnitude twice of the magnitude of vector B . The magnitude of vector B is:

- a) 8 ;
- b) $1.41 \cdot 8$;
- c) $8/(5)^{1/2}$;
- d) $8 \cdot (5)^{1/2}$.

Solution.

As vector B which lies on x -axis, then $\vec{B}(b; 0)$. The magnitude of vector B is $|\vec{B}| = \sqrt{b^2 + 0^2} = |b|$.

Assume that $\vec{A}(a_1; a_2)$.

The sum of these two vectors is $\vec{C} = \vec{A} + \vec{B} = (a_1; a_2) + (b; 0) = (a_1 + b; a_2)$. This vector lies on y -axis, so $a_1 + b = 0$, $a_1 = -b$.

The magnitude of vector \vec{A} is $|\vec{A}| = \sqrt{a_1^2 + a_2^2} = \sqrt{(-b)^2 + a_2^2} = \sqrt{b^2 + a_2^2}$. According to the condition of the problem, $|\vec{A}| = 8.0$.

The magnitude of vector \vec{C} is $|\vec{C}| = \sqrt{0^2 + a_2^2} = |a_2|$. According to the condition of the problem, $|\vec{C}| = 2 \cdot |\vec{B}|$, so $|a_2| = 2 \cdot |b|$.

Summarizing, $|\vec{A}| = \sqrt{b^2 + (2|b|)^2} = 8.0$, $|b| = \frac{8.0}{\sqrt{1+2^2}} = \frac{8.0}{\sqrt{5}}$.

Thus, the magnitude of vector \vec{B} is $|\vec{B}| = |b| = \frac{8.0}{\sqrt{5}}$.

Answer: C.