An object is thrown horizontally from a height of 20 m with velocity 10 ms -1. Find its velocity after 1 s
($\mathrm{g}=10 \mathrm{~ms}-2$)

Solution:

Resulting velocity after 1 s - is the vector sum of velocities along the X -axis and Y -axis:

$$
\vec{V}=\vec{V}_{x}+\vec{V}_{y}
$$

Along the X axis there is no acceleration, hence:

$$
\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{0}=10 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Along the Y axis there is acceleration $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, so we can write rate equation for Y axis:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{y}}=0+\mathrm{gt} \\
\mathrm{~V}_{\mathrm{y}}=\mathrm{gt}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 1 \mathrm{~s}=10 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Now we can find resulting velocity after 1 s (from the right triangle $A B C$) :
$V=\sqrt{V_{\mathrm{x}}^{2}+V_{y}^{2}}=\sqrt{\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=10 \sqrt{2} \frac{\mathrm{~m}}{\mathrm{~s}}=14 \frac{\mathrm{~m}}{\mathrm{~s}}$
Answer: velocity after 1 s will be $14 \frac{\mathrm{~m}}{\mathrm{~s}}$.

